Saccharomyces kluyveri FAD3 encodes an v3 fatty acid desaturase

نویسندگان

  • Takahiro Oura
  • Susumu Kajiwara
چکیده

Received 22 January 2004 Revised 26 February 2004 Accepted 27 February 2004 Fungi, like plants, are capable of producing the 18-carbon polyunsaturated fatty acids linoleic acid and a-linolenic acid. These fatty acids are synthesized by catalytic reactions of D12 and v3 fatty acid desaturases. This paper describes the first cloning and functional characterization of a yeast v3 fatty acid desaturase gene. The deduced protein encoded by the Saccharomyces kluyveri FAD3 gene (Sk-FAD3) consists of 419 amino acids, and shows 30–60% identity with D12 fatty acid desaturases of several eukaryotic organisms and 29–31% identity with v3 fatty acid desaturases of animals and plants. During Sk-FAD3 expression in Saccharomyces cerevisiae, a-linolenic acid accumulated only when linoleic acid was added to the culture medium. The disruption of Sk-FAD3 led to the disappearance of a-linolenic acid in S. kluyveri. These findings suggest that Sk-FAD3 is the only v3 fatty acid desaturase gene in this yeast. Furthermore, transcriptional expression of Sk-FAD3 appears to be regulated by low-temperature stress in a manner different from the other fatty acid desaturase genes in S. kluyveri.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chilling-sensitive, post-transcriptional regulation of a plant fatty acid desaturase expressed in yeast.

Plants respond to chilling exposure by increasing the relative proportion of polyunsaturated fatty acids in their lipids. However, unlike the response in many other organisms, plant fatty acid desaturase genes are typically not upregulated during this process. We expressed the Brassica napus FAD3 gene, which encodes an enzyme for synthesis of linolenic acid, in Saccharomyces cerevisiae and obse...

متن کامل

A novel Delta12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115.

The methylotrophic yeast Pichia pastoris GS115, a widely used strain in production of various heterologous proteins, especially membrane-bound enzymes, can also produce linoleic and linolenic acids, which indicates the existence of membrane-bound Delta12 and Delta15-fatty acid desaturases. This paper describes the cloning and functional characterization of a novel Delta12-fatty acid desaturase ...

متن کامل

A novel Δ12-fatty acid desaturase gene from methylotrophic yeast Pichia pastoris GS115*

The methylotrophic yeast Pichia pastoris GS115, a widely used strain in production of various heterologous proteins, especially membrane-bound enzymes, can also produce linoleic and linolenic acids, which indicates the existence of membrane-bound Δ12 and Δ15-fatty acid desaturases. This paper describes the cloning and functional characterization of a novel Δ12-fatty acid desaturase gene from th...

متن کامل

Two fatty acid desaturases, STEAROYL-ACYL CARRIER PROTEIN Δ9-DESATURASE6 and FATTY ACID DESATURASE3, are involved in drought and hypoxia stress signaling in Arabidopsis crown galls.

Agrobacterium tumefaciens-derived crown galls of Arabidopsis (Arabidopsis thaliana) contain elevated levels of unsaturated fatty acids and strongly express two fatty acid desaturase genes, ω3 FATTY ACID DESATURASE3 (FAD3) and STEAROYL-ACYL CARRIER PROTEIN Δ9-DESATURASE6 (SAD6). The fad3-2 mutant with impaired α-linolenic acid synthesis developed significantly smaller crown galls under normal, b...

متن کامل

Overexpression of the FAD3 desaturase gene in a mutant of Arabidopsis.

A mutant of Arabidopsis contained increased levels of 18:3 fatty acids and correspondingly decreased levels of 18:2. The fatty acid phenotype was strongly expressed in root and seed tissues and this observation, together with other data, suggested that the mutation leads to increased activity of the endoplasmic reticulum 18:2 desaturase encoded by the FAD3 gene. Gel-blot analysis of RNA from wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004